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We begin with some results that we shall use when making friction loss calculations for steady, 
fully developed, incompressible, Newtonian flow through a straight circular pipe. 

Volumetric flow rate 2

4
Q D Vπ
=  where D  is the pipe diameter, and V is the average velocity. 

 

Reynolds Number: 4 4Re DV DV Q m
D D

ρ
µ ν π ν π µ

= = = =


 where ρ  is the density of the 

fluid, µ  is its dynamic viscosity, and /ν µ ρ=  is the kinematic viscosity. 
 
The pressure drop P∆  is related to the loss in the Engineering Bernoulli Equation, or 
equivalently, the frictional head loss fh , through  loss fP hρ γ∆ = × =  

Here, the specific weight gγ ρ= , where g  is the magnitude of the acceleration due to gravity. 
 
Power 
 
The power required to overcome friction is related to the pressure drop through 
 
Power P Q= ∆  or we can relate it to the head loss due to pipe friction via Power fh Qγ=  

 
Head Loss/Pressure Drop 
 
The head loss fh  is related to the Fanning friction factor f  through 

2

2f
L Vh f
D g

  =   
  

  

or alternatively we can write the pressure drop as ( )22 LP f V
D

ρ ∆ =  
 

 

Friction Factor 
 

In laminar flow, 16
Re

f = .   

In turbulent flow we can use either the Colebrook or the Zigrang-Sylvester Equation, depending 
on the problem. Both give equivalent results well within experimental uncertainty.  In these 
equations, ε  is the average roughness of the interior surface of the pipe.  A table of roughness 
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values recommended for commercial pipes given in a textbook on Fluid Mechanics by F.M. 
White is provided at the end of these notes. 
 
Colebrook Equation 
 

10
1 / 1.264.0 log

3.7 Re
D

f f
ε 

= − + 
  

 

 
Zigrang-Sylvester Equation 
 

10 10
1 / 5.02 / 134.0 log log

3.7 Re 3.7 Re
D D

f
ε ε  = − − +    

 

 
Non-Circular Conduits 
 
Not all flow conduits are circular pipes.  An example of a non-circular cross-section in heat 
exchanger applications is an annulus, which is the region between two circular pipes.  Another is 
a rectangular duct, used in HVAC (Heating, Ventilation, and Air-Conditioning) applications.  
Less common are ducts of triangular or elliptical cross-sections, but they are used on occasion.  
In all these cases, when the flow is turbulent, we use the same friction factor correlations that are 
used for circular pipes, substituting an equivalent diameter for the pipe diameter.  The equivalent 
diameter eD , which is set equal to four times the “Hydraulic Radius,” hR is defined as follows. 
 

Cross -Sectional Area4 4
Wetted Perimetere hD R= = ×  

 
In this definition, the term “wetted perimeter” is used to designate the perimeter of the cross-
section that is in contact with the flowing fluid.  This applies to a liquid that occupies part of a 
conduit, as in sewer lines carrying waste-water, or a creek or river.  If a gas flows through a 
conduit, the entire perimeter is “wetted.” 
 
Using the above definition, we arrive at the following results for the equivalent diameter for two 
common cross-sections.  We assume that the entire perimeter is “wetted.” 
 
Rectangular Duct 
 

      
For the duct shown in the sketch, the cross-sectional area is ab , while the perimeter is ( )2 a b+  
so that the equivalent diameter is written as follows. 

a
b
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24
1 12( )e

abD
a b

a b

= × =
+  + 

 

 

 
If the flow is laminar, a result similar to that for circular tubes is available for the friction factor, 
which can be written as / Ref C= , where C  is a constant that depends on the aspect ratio 

/a b , and the Reynolds number is defined using the equivalent diameter.  A few values of the 
constant C  for selected values of the aspect ratio are given in the Table below (Source: F.M. 
White, Fluid Mechanics, 7th Edition).   For other aspect ratios, you can use interpolation. 
 
 

/a b  C  /a b  C  
1.0 14.23 6.0 19.70 
1.33 14.47 8.0 20.59 
2.0 15.55 10.0 21.17 
2.5 16.37 20.0 22.48 
4.0 18.23 ∞  24.00 
 
 
Annulus 
 

      
 
The cross-sectional area of the annulus shown is ( )2 2a bπ − , while the wetted perimeter is 

( )2 a bπ + .  Therefore, the equivalent diameter is obtained as 
 

( )
( ) ( )

2 2

4 2
2e

a b
D a b

a b
π

π

−
= = −

+
  

 
Again, for laminar flow, we find that / Ref C= , where C  is a constant that depends on the 
aspect ratio /a b , and the Reynolds number is defined using the equivalent diameter.  As with 
the rectangular cross-section, a few values constant C  for selected values of the aspect ratio are 
given in the Table that follows (Source: F.M. White, Fluid Mechanics, 7th Edition).   For other 
aspect ratios, you can use interpolation. 
 
 

a

b
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/a b  C  /a b  C  
1.0 24.00 10,0 22.34 
1.25 23.98 20.0 21.57 
1.67 23.90 100 20.03 
2.5 23.68 1000 18.67 
5.0 23.09 ∞  16.00 
 
Minor Losses 
 
Minor losses is a term used to describe losses that occur in fittings, expansions, contractions, and 
the like.  Fittings commonly used in the industry include bends, tees, elbows, unions, and of 
course, valves used to control flow.  Even though these losses are called minor, they can be 
substantial compared to those for flow through short straight pipe segments.  Losses are 
commonly reported in velocity heads.  A velocity head is ( )2 / 2V g .  Therefore, we can write 

minor losses as 
2

2m L
Vh K

g
= , where LK  is called the loss coefficient.    

 
Typical values of LK  for some common fittings are given below.  Usually, the values depend 
upon the nominal pipe diameter, the Reynolds number, and the manner in which the valve is 
installed (screwed or flanged).  Manufacturers’ data should be used wherever possible.   
Globe Valve (fully open): 5.5 - 14 
Gate Valve (fully open): 0.03 - 0.80 
Swing Check Valve (fully open): 2.0 - 5.1 
 
Standard 45o Elbow: 0.2 - 0.4 
Long radius 45o Elbow: 0.14 - 0.21 
 
Standard 90o Elbow: 0.21 - 2.0 
Long radius 90o Elbow: 0.07 - 1.0 
 
Tee: 0.1 - 2.4 
 
When solving homework problems, use the values given in Table 13.1 in the textbook by 
Welty et al. 
 
Sudden Expansion and Sudden Contraction 
 
A sudden expansion in a pipe is one of the few cases where the losses can be obtained from the 
basic balances.  The expression for LK   is given by 
 

22

21L
dK
D

 
= − 
 
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Here, d  and D  represent the diameters of the smaller and larger pipes, respectively.  For a 
sudden contraction, we can use the same result if / 0.76d D ≥ .   For smaller values of /d D  we 
can use the empirical relation 2 20.42 1 /LK d D = −  . 

In both cases, we should multiply LK  by the velocity head in the pipe segment of diameter d . 
The losses would be smaller if the expansion or contraction is gradual.   
 
When a pipe empties into a reservoir, all the kinetic energy in the fluid coming in is dissipated, 
so that you can treat this as a sudden expansion with the ratio / 0d D = ,  yielding 1LK = . 
 
Typical Pipe Flow Problems 
 
In typical pipe flow problems, we know the nature of the fluid that will flow through the pipe, 
and the temperature.  Therefore, we can find the relevant physical properties immediately.  They 
are the density ρ  and the dynamic viscosity µ .  Knowing these properties, we also can calculate 
the kinematic viscosity /ν µ ρ= . 
 
The length of the pipe L  can be estimated from process equipment layout considerations.  The 
nature of the fluid to be pumped will dictate corrosion constraints on the pipe material.  Other 
considerations are cost and ease of procurement.  Based on these, we can select the material of 
the pipe to be used, and once we do, the roughness ε  can be specified.  This leaves us with three 
unspecified parameters, namely the head loss fh  or equivalently, the pressure drop required to 
pump the fluid p∆ , the volumetric flow rate Q  (or equivalently the mass flow rate), and the pipe 
diameter D .  Unless we plan to also optimize the cost, two of these must be specified, leaving 
only a single parameter to be calculated.  Thus, pipe flow problems that do not involve cost 
optimization will fall into three broad categories.   
 
1. Given D  and Q , find the head loss fh  
 
2. Given D  and fh , find the volumetric flow rate Q  
 
3.  Given Q  and fh , find the diameter D  
 
Each of these three types of problems is illustrated next with a numerical example. 
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Example 1 
 
Find the head loss due to the flow of 1,500 gpm of oil ( 4 21.15 10 /ft sν −= × ) through 1,600 feet 
of 8" diameter cast iron pipe.  If the density of the oil 31.75 /slug ftρ = , what is the power to be 
supplied by a pump to the fluid?  Find the BHP of the pump if its efficiency is 0.85. 
   
Solution 
 
We have the following information. 

31.75 /slug ftρ =   4 21.15 10 /ft sν −= ×   0.667D ft=   
 
Therefore, the cross-sectional area is  
 

( )22 2/ 4 0.667 / 4 0.349A D ft ftπ π= = × =  
 

( ) ( )
( )

3 31 /
1500 3.34

448.8
ft s ftQ gpm

gpm s
= × =  

Therefore, the average velocity through the pipe is 
( )
( )

3

2

3.34 /
9.58

0.349

ft sQ ftV
A sft

= = =  

We can calculate the Reynolds number. 
 

( ) ( )
( )

4
4 2

0.667 9.58 /
Re 5.55 10

1.15 10 /
ft ft sDV

ft sν −

×
= = = ×

×
  Therefore, the flow is turbulent. 

 
For cast iron, 48.5 10 ftε −= × .  Therefore, the relative roughness is 
 

( )
( )

4
38.5 10

1.27 10
0.667

ft
D ft
ε −

−×
= = ×  

 
Because we have the values of both the Reynolds number and the relative roughness, it is 
efficient to use the Zigrang-Sylvester equation for a once-through calculation of the turbulent 
flow friction factor. 
 

10 10

3 3

10 104 4

1 / 5.02 / 134.0 log log
3.7 Re 3.7 Re

1.27 10 5.02 1.27 10 134.0 log log 12.8
3.7 5.55 10 3.7 5.55 10

D D
f

ε ε

− −

  = − − +    

  × ×
= − − + =  × ×  

 

which yields 0.00612f =  
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The head loss is obtained by using 
( )
( )

( )
( )

22

2

1,600 9.58 /
2 2 0.00612 83.7

0.667 32.2 /f

ft ft sL Vh f ft
D g ft ft s

  = = × × × =  
  

 

The mass flow rate is 
3

31.75 3.34 5.85slug ft slugm Q
ft s s

ρ
  

= = × =  
   

  

The power supplied to the fluid is calculated from 
 

( ) 4
2Power to Fluid 5.85 83.7 32.2 1.58 10 f

f

ft lbslug ftm h g ft
s s s

•   = = × × = ×   
   

  

We know that 1 HorsePower 550 fft lb
s
•

= .  Therefore, Power to Fluid 28.7 hp=  

The efficiency of the pump 0.85η = .  Therefore, 
 

( )28.7Power to FluidBrake Horse Power 33.7
0.85

hp
hp

η
= = =  

 
Example 2 
 
Water at 15 C  flows through a 25 cm−  diameter riveted steel pipe of length 450 m  and 
roughness 3.2 mmε = . The head loss is known to be 7.30 m .  Find the volumetric flow rate of 
water in the pipe. 
   
Solution 
 
For water at 15 C , 3999 /kg mρ =  31.16 10 Pa sµ −= × •  so that the kinematic viscosity can be 

calculated as 6 2/ 1.16 10 /m sν µ ρ −= = ×   
 
The pipe diameter is given as 0.25D m= , so that the cross-sectional area is  

( )22 2 2/ 4 0.25 / 4 4.91 10A D m mπ π −= = × = ×  

The length of the pipe is given as 450L m=  
We do not know the velocity of water in the pipe, but we can express the Reynolds number in 
terms of the unknown velocity. 
 

( )
( )

5
6 2

0.25
Re 2.16 10

1.16 10 /
m VDV V

m sν −

×
= = = ×

×
 where V  must be in /m s . 

At this point, we do not know whether the flow is laminar or turbulent.  Given the size of the 
pipe and the head loss, it is reasonable to assume turbulent flow and proceed.  In the end, we 
need to check whether this assumption is correct.   
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Now, we are given the head loss fh .  Let us write the result for fh  in terms of the friction factor. 
2

2f
L Vh f
D g

  =   
  

  Substitute the values of known entities in this equation. 

( ) ( )
( ) ( )

2

2

450
7.30 2

0.25 9.81 /
m Vm f
m m s

  
 = × ×       

  This can be rearranged to yield 

 
2

2 2
21.99 10 mfV

s
−= ×  where  V  must be in /m s . 

 

Taking the square root, we find 0.141f
V

=  

 
We can see that the product Re f  can be calculated, even though we do not know the velocity 
V . 

5 40.141Re 2.16 10 3.05 10f V
V

= × × = ×  

 
Given 3.2 mmε = , the relative roughness is 

( )
( )

3
23.2 10

1.28 10
0.25

m
D m
ε −

−×
= = ×  

 
Therefore, the entire right side in the Colebrook Equation for the friction factor is known.  We 
can use the Colebrook Equation to evaluate the friction factor in an once-through calculation. 
 

2

10 10 4

1 / 1.26 1.28 10 1.264.0 log 4.0 log 9.82
3.7 3.7 3.05 10Re

D
f f

ε −   ×
= − + = − + =   ×    

 

 
Therefore, the friction factor is 0.0104f =  
 

Using 0.141f
V

= , we can evaluate the velocity as 

 ( ) ( )0.141 / 0.141 /
1.39 /

0.102
m s m s

V m s
f

= = =   so that the volumetric flow rate is obtained as 

( ) ( )
3

2 2 21.39 / 4.91 10 6.80 10 mQ VA m s m
s

− −= = × × = ×  

We must check the Reynolds number.  5 5Re 2.16 10 3.00 10V= × = × .  This is well over 4,000  
so that we can conclude that the assumption of turbulent flow is correct. 
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Example 3 
 
Determine the size of smooth 14-gage BWG copper tubing needed to convey 10 gpm  of a 
process liquid of kinematic viscosity 5 22.40 10 /ft sν −= ×  over a distance of 133 ft  at ground 
level using a storage tank at an elevation of 20 ft .  You can assume minor losses from fittings in 
the line to account for 5 ft  of head. 
 
In this problem, we are asked to calculate the diameter D  of the tube.  We are given 150L ft=  

and 
( )
( )

3 3
2

1 /
10 2.23 10

448.8
ft s ftQ gpm

gpm s
−= × = × .  Given that the storage tank is located at an 

elevation of 20 ft above ground, we can infer that the available head loss for friction in the flow 
through the tube is ( )20 5 15fh ft ft= − = . 
 
The diameter appears in both the Reynolds number and the result for the head loss in terms of the 
friction factor.   Let us begin with the head loss and write it in terms of the volumetric flow rate, 
which is known. 
  

( )222 2

2 5

4 / 322 2f

Q DL V L LQh f f f
D g D g gD

π

π

      = = = ×           
 

 
Substituting known entities in this equation, we obtain 
 

( ) ( )
( )

22 3
3

52 2 5

32 133 2.23 10 /
15 6.65 10

32.2 /

ft ft s fft f
Dft s Dπ

−
−

× × ×
= × = ×

× ×
  so that  3 52.26 10f D= ×  

where D  must be in feet. 
 
The Reynolds number can be written as 
 

( )
( )
2 3 3

5 2

4 2.23 10 /4 1.18 10Re
2.40 10 /

ft sQ
D Dft s Dπν π

−

−

× × ×
= = =

× × ×
 where D  must be in feet. 

We can make further progress if we assume the type of flow, so that we can use a correlation for 
the friction factor.  It is reasonable in process situations with this flow rate to assume turbulent 
flow.  So, we shall proceed with that assumption, to be verified later when we can calculate the 
Reynolds number. 
 
It does not matter which correlation we use, because we must solve an implicit equation for the 
diameter in either case.  So, let us use the Colebrook equation because it is simpler.  For a 
smooth tube, the roughness , 0ε = , so that we can set the relative roughness / 0Dε =  in the 
Colebrook equation to obtain 
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10
1 1.264.0 log

Ref f

 
= −  

  
 

 
In this equation, substitute for both the friction factor and the Reynolds number in terms of the 
diameter, to obtain 
 

( ) ( )
5

10 105/2 3/23 5/2

1 1.26 2.25 104.0 log 4.0 log
47.5 1.18 10 / 47.5D DD D

−   ×
 = − = −  × ×    

 

 
or  
 

5/2 5 3/2
10190 log 2.25 10D D− − − = − ×   

 
Solving this equation, we obtain 27.91 10 0.949"D ft−= × =  
 
A table of standard tubing dimensions for specified nominal diameters and Birmingham Wire 
Gage (BWG) values can be found in many places.  The textbook by Welty et al. provides it as 
Appendix N.  From the table, we find that for 14-gage tubing with an outside diameter of 1" , the 

inside diameter is 0.834”.  The next higher outside diameter available is 11
4
− inch , and for this 

OD, 14-gage tubing comes with an inside diameter of 1.084”.  Therefore, we must select one of 
these two tubes.  If we want to be sure to obtain the desired flow rate, we must choose the value 
that is larger than 0.949” .  You may wonder why.  Here is an approximate answer. 
 
In turbulent flow, the friction factor af V −∝ , where 0 1a≤ < .  In laminar flow, 1f V −∝ .  In 
both cases, we can write 2 bfV V∝ where 0b > .  Therefore, the head loss from pipe flow 

friction 2 21 2 1 1 b
f

Lh fV fV V
D g D D

 
= ∝ ∝ 

 
  

For a fixed volumetric flow rate, as the diameter is increased, bV decreases and 1/ D  also 
decreases.  Therefore, the head loss decreases for a given volumetric flow rate as the diameter is 
increased.  This means that with a fixed head loss available, we can comfortably achieve the 
desired flow rate using a suitable valve.  On the other hand, if we choose a diameter that is 
smaller than the calculated value, we would need a larger head available for driving the flow 
than is available. 
 
Now, let us use the actual inside diameter of the selected tube, 21.084" 9.03 10D ft−= = ×  to 
evaluate the Reynolds number of the flow.  
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( )
( ) ( )

2 3
4

5 2 2

4 2.23 10 /4Re 1.31 10
2.40 10 / 9.03 10

ft sQ
D ft s ftπν π

−

− −

× ×
= = = ×

× × × ×
  Therefore, the flow is 

turbulent as assumed. 
 
The actual friction factor can be calculated from the Zigrang-Sylvester equation. 
 

10 10

10 104 4

1 / 5.02 / 134.0 log log
3.7 Re 3.7 Re

5.02 134.0 log 0 log 0 11.8
1.31 10 1.31 10

D D
f

ε ε  = − − +    

  = − − + =  × ×  

 

yielding 0.00724f =  
 
The actual head loss for the desired volumetric flow rate will be 
 

( ) ( )
( ) ( )

22 32

52 5 2 2 2

32 133 2.23 10 /32 0.00724 8.03
32.2 / 9.03 10

f

ft ft sLQh f ft
gD ft s ftπ π

−

−

× × ×
= × = × =

× × ×
 

 
which is less than available head of 15 ft . 
 

Therefore, we must specify 14-gage, 11
4
− inch tubing for this application. 
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Roughness values for Commercial Pipes 
 
These roughness values are given in Table 6.1 from a textbook by White (1).  Because of the 
variation in roughness in these materials depending on the source, the roughness values reported 
here have uncertainties ranging from 20 %±  for new wrought Iron to 70 %±  for riveted steel.  
A typical uncertainty in the roughness values can be assumed to be in the range 30 50 %± − . 
 
 

Material Condition ft mm 
Steel Sheet metal, new 41.6 10−×  25 10−×  
 Stainless, new 67 10−×  32 10−×  
 Commercial, new 41.5 10−×  24.6 10−×  
 Riveted 21 10−×  3.0  
 Rusted 37 10−×  2.0  
Iron Cast, new 48.5 10−×  12.6 10−×  
 Wrought, new 41.5 10−×  24.6 10−×  
 Galvanized, new 45 10−×  11.5 10−×  
 Asphalted, cast 44 10−×  11.2 10−×  
Brass Drawn, new 67 10−×  32 10−×  
Plastic  Drawn tubing 65 10−×  31.5 10−×  
Glass  Smooth Smooth 
Concrete Smoothed 41.3 10−×  24 10−×  
 Rough 37 10−×  2.0  
Rubber Smoothed 53.3 10−×  21 10−×  
Wood Stave 31.6 10−×  15 10−×  
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