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Abstract. The Colebrook [1] equation is considered the standard for the
calculation of friction factor for turbulent flow in commercial pipes, but it
is implicit, and therefore it must be computed by iterative methods. Al-
though such iterative computation quickly converges, the computational
time in large pipe system simulations can be reduced using an accurate
explicit correlation. A review of the up to date literature identified 30
different explicit correlations. In order to determine which correlation is
the best alternative to Colebrook’s, both accuracy and computational
burden were compared. The accuracy of each explicit correlation was
compared against Colebrook’s correlation using the mean and maximum
relative errors and the coefficient of determination. Also, the computa-
tional time of each equation was measured using the tic and toc functions
in GNU Octave software. It was found that the iterative computation of
the Colebrook equation demands about 2.6 times the computational time
of the slowest explicit correlation. The correlations with the best balance
between accuracy and computational burden are, in decreasing order of
accuracy and increasing order of speed, correlations by Serghides [13]
(Eqs. (17), (18), (19), and (20)), by Shacham [8] (Eqs. (10) and (11)),
by Brkić and Praks [33] (Eqs. (53), (54), (55), and (56)), and by Fang et
al. [19] (Eq. (28)).
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1 Introduction

Fluid flow in pipes and ducts is widely used in applications such as the trans-
portation of oil and gas, irrigation, water distribution, air conditioning, and
power plants. The friction factor is used in the computation of head loss or
pressure drop in pipes, which is the loss of the flow’s mechanical energy due to
viscous friction. Major or distributed losses are caused by viscous friction caused
by the pipe’s wall while minor or local losses are caused by the recirculating and
turbulent mixture of fluid caused by inlets, outlets, contractions, expansions,
curves, valves, junctions, among others structural features of the pipe through
the flow’s path. These losses hL are defined as:

hL = f
L

D

V
2

2g
(1)

where f is the friction factor, L is the pipe’s length, D is the pipe’s internal
diameter, V is the average fluid velocity, and g is the gravitational acceleration.
For minor losses, an equivalent pipe length can be used.

For laminar flow, the friction factor is computed analytically as a function of
the Reynolds number, Re, and for pipes of circular section it is defined as:

f =
64

Re
(2)

where Re is defined as:

Re =
ρV D

µ
(3)

where ρ is the fluid’s specific mass and µ is the fluid’s dynamic viscosity. For
transition and turbulent flow in commercial pipes, Colebrook [1] proposed, in
1939, Equation (4) based on experimental data.

1√
f
= −2 log10

(
ε/D

3.7
+

2.51

Re
√
f

)
(4)

where ε is the absolute internal roughness of the pipe and ε/D is its relative
roughness. Eq. (4) is considered the standard in friction factor computation, but
it is implicit, and therefore it must be computed by some iterative method. In
1944, Moody [3] plotted this equation in a diagram to simplify its usage in en-
gineering. Also, many explicit correlations were proposed since then, mostly as
approximations of Colebrook’s implicit correlation. Although the iterative com-
putation converges quickly, computational time in large pipe system simulations
can be reduced using a sufficiently accurate explicit correlation.

In this context, the objective of this work is to make a comparative analysis
between the Colebrook equation and explicit correlations available in the litera-
ture. The accuracy, against the Colebrook equation, and the computational time
of the correlations are compared. To check the accuracy of Colebrook’s correla-
tion relative to experimental data in real pipes is beyond the objective of this
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work. It should be mentioned that the application of any correlation in real pipe
systems depends on measurements of relative roughness and Reynolds number,
and therefore they propagate intrinsic uncertainties to the friction factor [2].

2 Explicit Correlations

Since Colebrook put forward his equation, many explicit correlations for tur-
bulent friction factor were proposed. Here, the chronological appearance of 30
different explicit equations is depicted from Eq. (5), which was proposed by
Moody [4] himself in 1947, to Brkić and Praks’ [33] in 2019.

f = 0.0055

[
1 +

(
2× 104

ε

D
+

106

Re

)1/3
]

(5)

In 1966, Wood [5] suggested Eq. (6). It should be noted that this equation is
not valid to relative roughness equal to zero.

f = 0.53
ε

D
+ 0.094

( ε
D

)0.225
+ 88

( ε
D

)0.44
ReA1 (6)

where:

A1 = −1.62
( ε
D

)0.134
(7)

Eq. (8) was proposed by Churchill [6] in 1973.

f =

{
−2 log10

[
ε/D

3.7
+

(
7

Re

)0.9
]}−2

(8)

Swamee and Jain [7] introduced Eq. (9) in 1976.

f =
0.25{

log10
[
(ε/D)/3.7 + 5.74/Re0.9

]}2 (9)

Eq. (10) was recommended by Shacham [8] in 1980.

f =

{[
A2(1− lnA2)−

ε/D

3.7

]
/

(
1.15129A2 +

2.51

Re

)}−2

(10)

where:

A2 =
ε/D

3.7
− 5.02

Re
log10

(
ε/D

3.7
+

14.5

Re

)
(11)

In 1981, Eq. (12) was suggested by Barr [9].

f =

−2 log10
ε/D3.7 +

4.518 log10 (Re/7)

Re
[
1 +

(
Re0.52/29

)
(ε/D)

0.7
]

−2

(12)
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Zigrang and Sylvester [10] proposed, in 1982, Eq. (13).

f =

{
−2 log10

[
ε/D

3.7
− 5.02

Re
log10

(
ε/D

3.7
− 5.02

Re
log10A3

)]}−2

(13)

where:

A3 =
ε/D

3.7
+

13

Re
(14)

In 1983, Haaland [11] submitted Eq. (15).

f =

{
−1.8 log10

[
6, 9

Re
+

(
ε/D

3, 7

)1.11
]}−2

(15)

In 1984, Chen [12] recommended Eq. (16).

f = 0.3164

(
1

Re0.83
+ 0.11

ε

D

)0.3

(16)

Eq. (17) was proposed by Serghides [13] in 1984.

f =

[
A4 −

(B4 −A4)
2

A4 − 2B4 + C4

]−2

(17)

where:

A4 = −2 log10
(
ε/D

3.7
+

12

Re

)
(18)

B4 = −2 log10
(
ε/D

3.7
+

2.51A4

Re

)
(19)

C4 = −2 log10
(
ε/D

3.7
+

2.51A4

Re

)
(20)

In 1997, Manadilli [14] presented Eq. (21).

f =

[
−2 log10

(
ε/D

3.70
+

95

Re0.983
− 96.82

Re

)]−2

(21)

Sonnad and Goudar [15], in 2006, proposed Eq. (22).

f =

{
0.8686 ln

[
0.4587Re

A
A5/(A5+1)
5

]}−2

(22)

where:

A5 = 0.124
ε

D
Re + ln (0.4587Re) (23)
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Vatankhah [16], in 2014, optimized Eq. (22). Equation (24) is the optimized
form.

f =

{
0.8686 ln

[
0.4599Re

(A6 − 0.2753)
A6/(A6+0.9741)

]}
(24)

where:

A6 = 0.124
ε

D
Re + ln (0.4599Re) (25)

Avci and Karagoz [17] suggested, in 2009, Eq. (26).

f =
6.4{

lnRe− ln
[
1 + 0.01Re(ε/D)

(
1 + 10

√
ε/D

)]}2.4 (26)

Eq. (27) was introduced by Papaevangelou et al. [18] in 2010.

f =
0.2479− 0.0000947(7− log10 Re)

4{
log10

[
(ε/D)/3.615 + 7.366/Re0.9142

]}2 (27)

In 2011, Fang et al. [19] recommended Eq. (28).

f = 1.613

{
ln

[
0.234

( ε
D

)1.1007
− 60.525

Re1.1105
+

56.291

Re1.0712

]}−2

(28)

Ghanbari et al. [20] proposed, in 2011, Eq. (29).

f =

{
−1.52 log10

[(
ε/D

7.21

)1.042

+

(
2.731

Re

)0.9152
]}−2.169

(29)

Eq. (30) was submitted by Samadianfard [21] in 2012.

f =

[
Reε/D − 0.6315093

Re1/3 +Re(ε/D)

]
+ 0.0275308

(
6.929841

Re
+ ε/D

)1/9

+A7 (30)

where:

A7 =

[
10ε/D

(ε/D) + 4.781616

](√
ε/D +

9.99701

Re

)
(31)

In 2014, Vatankhah [16] also proposed Eq. (32).

f =

[
2.51/Re + 1.1513A8

A8 − (ε/D)/3.71− 2.3026A8 log10 (A8)

]2
(32)

where:
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A8 =
6.0173

Re
[
0.07(ε/D) + Re−0.885

]0.109 +
ε/D

3.71
(33)

In 2015, Heydari et al. [22] proposed Eq. (34).

f =

[
0.42 + 16.27

ε

D
− 1.81 log10

(
ε/D

3.7
+

5.74

Re0.9

)
+A9 +B9

]−2

(34)

where:

A9 = −54.81(ε/D)
2
+ 0.02

[
log10

(
ε/D

3.7
+

5.74

Re0.9

)]2
(35)

B9 = 8.74(ε/D) log10

(
ε/D

3.7
+

5.74

Re0.9

)
(36)

Eq. (37) was suggested by Offor and Alabi [23] in 2016.

f =

(
−2 log10

{
ε/D

3.71
− 1.975

Re
ln

[(
ε/D

3.93

)1.092

+
7.627

Re + 395.9

]})−2

(37)

In 2016, Beluco and Schettini [24] presented Eq. (38).

f = 0.3009

{
log10

[(
ε/D

3.7315

)1.0954

+

(
5.9802

Re

)0.9695
]}−2

(38)

In 2017, Biberg [25] recommended Eq. (39).

f =

{
2

ln 10

[
ln

(
ln 10 Re

5.02

)
+

(
1

A10
− 1

)
lnA10

]}−2

(39)

where:

A10 = ln

(
ln 10 Re

5.02

)
+

ln 10 Re

18.574

ε

D
(40)

In 2017, Brkić and Ćojbašić [26] suggested optimized forms of various explicit
correlations. Their goal was to minimize the maximum relative error of these
equations. Eq. (41) is the optimized form of the correlation proposed by Eck [27]
in 1966 and Eq. (42) is the optimized form of the correlation introduced by
Chen [28] in 1979.

f =

[
−1.963 log10

(
14.064

Re
+

ε/D

4.034

)]−2

(41)



Accuracy/Speed Analysis 7

f =

(
−2.003 log10

{
ε/D

3.689
− 4.933

Re
log10

[
1

2.762

( ε
D

)1.109
+A11

]})−2

(42)

where:
A11 =

5.89

Re0.923
(43)

Eq. (44) is the optimized form of Round’s [29] equation from 1980.

f =

{
1.898 log10

[
Re

0.202Re(ε/D) + 9.779

]}−2

(44)

Eq. (45) is the optimized form of correlation by Romeo et al. [30] from 2002.

f =

{
−2 log10

[
ε/D

3.7106
− 5

Re
log10

(
ε/D

3.8597
− 4.795

Re
log10A12

)]}−2

(45)

where:

A12 =

(
ε/D

7.646

)0.9685

+

(
4.9755

206.2795 + Re

)0.0,8759

(46)

Eq. (47) is the optimized form of the equation proposed by Buzzelli [31] in
2008.

f =

{
A13 −

[
A13 + 1.9999 log10 (B13/Re)

0.9996 + 2.1018/B13

]}−2

(47)

where:

A13 =
0.7314 lnRe− 1.3163

1.0025 + 1.2435
√
ε/D

(48)

B13 =
ε/D

3.7165
Re + 2.5137A13 (49)

Eq. (50) was introduced by Gregory and McEnery [32] in 2017.

f =

[
−2 log10

(
ε/D

3.7
+

1.64A14

ReB14

)]−2

(50)

where:

A14 = 0.9− 4.9
ε

D
+ 0.1e−400(ε/D) (51)

B14 = 1− 1

4 + 0.208 ln (Re/3000)
(52)

In 2019, Brkić and Praks [33] submitted Eq. (53).
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f =

{
0.8686

[
A15 − C15 +

C15

A15 +B15

]}−2

(53)

where:

A15 = lnRe− 0.779397488 (54)

B15 =
Re(ε/D)

8.0878
(55)

C15 = ln (A15 +B15) (56)

This list is not exhaustive, but it contains the explicit correlations that are
frequently referenced in similar accuracy and complexity comparison works [34–
38]. Some correlations were excluded because the required reference was not
available, due to minor changes from the presented ones, or due to the excessive
complexity of their equations.

3 Methodology

The evaluation of accuracy, against the Colebrook equation, and computational
burden of the explicit correlations presented in Section 2 were performed in GNU
Octave software, version 4.2.1, running in a computer with an Intel Core i5−6600
3.90 GHz processor and 8 GB of RAM.

3.1 Accuracy Evaluation

The accuracy of the 30 explicit correlations from Eq. (5) to (56) was evalu-
ated by their range of error (minimum and maximum errors), average error and
coefficient of determination or R2, all against the Colebrook equation.

A domain of 402 values of relative roughness in 10−6 ≤ ε/D ≤ 0.05 plus
ε/D = 0 (0, 1.0×10−6, 1.1×10−6, . . . , 9.9×10−6, 1.0×10−5, 1.1×10−5, . . . ,
5.0×10−2) by 4201 values of Reynolds number in 4000 ≤ Re ≤ 108 (4.00×103,
4.01×103, . . . , 9.99×103, 1.00×104, 1.01×104, . . . , 1.00×108) was created yield-
ing a total of 1688802 points, corresponding to the ranges of values used by
Moody [3] in his diagram. The friction factor was calculated for all points by the
Colebrook equation and by each explicit correlation. Smooth pipe, i.e. ε/D = 0,
was not evaluated in Wood’s [5] correlation (Eqs. (6) and (7)) because it does
not accept this value. The Colebrook equation was calculated by the fixed point
iterative method defined as:

1√
fi+1

= −2 log10
(
ε/D

3.7
+

2.51

Re
√
fi

)
, i = 1, 2, . . . , N (57)

where fi is the friction factor in the iteration i, fi+1 is the friction factor to
be used in the next iteration, and N is the number of iterations. An initial
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guess is used for fi in the first iteration, and it is followed by the iterations
until the criterion of convergence is achieved. The initial value used was 0.0425,
which is the average of the minimum and maximum friction factor values in the
Moody diagram, i.e. 0.005 and 0.08. The criterion of convergence was an absolute
error between two consecutive iterations of less than 10−10. Using this iterative
method, Colebrook’s correlation converges after an average of 8 iterations. Also,
the initial value does not affect too much the convergence as long as it is larger
than zero.

The relative dimensionless error ε of each point is defined as:

ε =
fC − fCW
fCW

(58)

where fC is the friction factor calculated by the correspondent explicit correlation
and fCW is the friction factor calculated by the Colebrook equation. The average
of the relative error ε is defined as:

ε =
1

P

P∑
i=1

|fCi − fCWi |
fCWi

(59)

where P is the number of points used in the accuracy evaluation, i.e. 1688802,
fCi

is the friction factor calculated by the correspondent explicit correlation for
the point, and fCWi

is the friction factor calculated by Colebrook’s correlation
for the point. Also, the ratio of maximum relative error was calculated as the
correlation’s maximum relative error divided by the smallest maximum relative
error among all correlations.

The coefficient determination R2 is defined as:

R2 = 1−
P∑
i=1

(fCWi
− fCi

)
2
/

P∑
i=1

(
fCWi

− fCW
)2

(60)

where fCW is the average of all values of friction factor calculated by the Cole-
brook equation, which is approximately 0.025, defined as:

fCW =
1

P

P∑
i=1

fCWi
(61)

3.2 Computational Burden Evaluation

The computational times of the 30 explicit correlations from Eq. (5) to (56) and
of the Colebrook equation were measured using the tic and toc functions in GNU
Octave software release 4.2.1.

It was used a domain of 42 values of relative roughness in 10−6 ≤ ε/D ≤ 0.05
plus ε/D = 0 by 421 values o Reynolds number in 4000 ≤ Re ≤ 108 with a total
of 17682 points. The friction factor was calculated by the Colebrook equation
and by each explicit correlation for all points, and the time taken was measured.
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As in the accuracy evaluation, smooth pipe, i.e. ε/D = 0, was not evaluated
in Eqs. (6) and (7), which correspond to the correlation proposed by Wood [5].
Also, the Colebrook equation was calculated by the fixed point iterative method
with 0.0425 as an initial value and an absolute error between two consecutive
iterations of less than 10−10 was used as the criterion of convergence. This com-
putational time measurement was repeated nine times and were calculate their
average and standard deviation σ:

σ =

√√√√ 1

M − 1

M∑
i=1

(
ti − t

)2 (62)

whereM is the number of measurements, i.e. 9, ti is the computational time mea-
sured and t is the average of the measured computational times. Also, in order
to make this computational time dimensionless and independent of the compu-
tational power of the computer, the ratio of computational time was calculated
as the correlation’s computational time divided by the smallest computational
time among all correlations.

4 Results and Discussion

The results from both accuracy and computational time evaluations are sum-
marized and discussed in this section. The computational codes developed in
this work are published in the Code Ocean platform and available in: https:
//codeocean.com/capsule/7657118/.

4.1 Accuracy of the Correlations

Table 1 shows the accuracy of the explicit correlations. Their ratio of maximum
error, range of error, average error and R2 are shown. All 30 explicit correlations
are ranked from the smallest to the largest maximum relative error, in absolute
values. The ranking does not change significantly if the average error is used as
the main criteria of comparison.

Correlation by Serghides [13] (Eqs. (17) to (20)) is the most accurate one,
with maximum relative error of 0.00314%. The next is correlation by Shacham [8]
(Eq. (10) and (11)), with maximum relative error of 0.01740%. With maximum
relative errors between 0.10407% and 0.15285% are correlations by Buzzelli [26]
(Eqs. (47) to (49)), by Zigrang and Sylvester [10] (Eqs. (13) and (14)), by
Brkić and Praks [33] (Eqs. (53) to (56)), by Offor and Alabi [23] (Eq. (37)), by
Vatankhah [16] (Eqs. (32) and (33)), by Romeo et al. [26] (Eqs. (45) and (46)),
by Sonnad and Goudar [16] (Eqs. (24) and (25)) and by Biberg [25] (Eqs. (39)
and (40)). All these correlations have average error equal or less than 0.05500%
and R2 equal to 1.00000.

Correlations by Chen [26] (Eq. (43)), by Fang et al. [19] (Eq. (28)), by
Barr [9] (Eq. (12)), by Papaevangelou et al. [18] (Eq. (27)) and by Sonnad
and Goudar [15] (Eqs. (22) and (23)) have maximum relative errors between
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Table 1. Ranking of the most to the less accurate explicit correlations. Error ratio is
the maximum error of the correlation divided by the smallest maximum error among
all correlations, ε is the range of errors, ε is the average error in absolute value and R2

is the coefficient of determination.

Equation(s) Error ratio ε [%] ε [%] R2

(17), (18), (19), and (20) 1.00000 [-0.00314, 0.00000] 0.00055 1.00000
(10) and (11) 5.54637 [-0.00044, 0.01740] 0.00206 1.00000
(47), (48), and (49) 33.16356 [-0.10407, 0.07123] 0.03280 1.00000
(13) and (14) 36.20211 [-0.11360, 0.04060] 0.02447 1.00000
(53), (54), (55), and (56) 39.66605 [-0.12447, 0.08703] 0.05500 1.00000
(37) 39.93023 [-0.12530, 0.04924] 0.05199 1.00000
(32) and (33) 39.93048 [-0.12530, 0.05958] 0.04297 1.00000
(45) and (46) 42.31998 [-0.13280, 0.00137] 0.04521 1.00000
(24) and (25) 44.33863 [-0.13913, -0.00509] 0.04811 1.00000
(39) and (40) 48.71029 [-0.10478, 0.15285] 0.03583 1.00000
(42) and (43) 96.82851 [-0.30384, 0.10366] 0.12043 0.99999
(28) 156.62707 [-0.44092, 0.49149] 0.16294 0.99999
(12) 170.10547 [-0.53378, 0.32094] 0.06569 0.99999
(27) 257.77584 [-0.80889, 0.57827] 0.17521 0.99998
(22) and (23) 316.34152 [0.00187, 0.99267] 0.25125 0.99993
(34), (35), and (36) 417.81326 [-1.25486, 1.31108] 0.67725 0.99984
(50), (51), and (52) 431.85845 [-1.35515, 0.72541] 0.22497 0.99997
(15) 453.68782 [-1.42365, 1.31384] 0.44954 0.99991
(21) 869.52101 [-0.00407, 2.72852] 0.38169 0.99972
(29) 922.96631 [-2.89623, 2.15521] 0.72309 0.99937
(26) 954.27655 [-2.99448, 2.90109] 1.03591 0.99901
(38) 1046.80961 [-0.93384, 3.28485] 0.28874 0.99997
(9) 1070.18734 [-0.70862, 3.35820] 0.51644 0.99959
(8) 1089.57825 [-0.62086, 3.41905] 0.52977 0.99957
(44) 1742.94614 [-5.15812, 5.46929] 2.31334 0.99863
(41) 2545.82949 [-6.94966, 7.98871] 2.11387 0.99685
(30) and (31) 3956.45491 [-12.41519, 7.42849] 1.75428 0.99889
(5) 5066.56332 [-15.89867, 12.53223] 3.09869 0.97956
(6) and (7) 8997.41867 [-28.23353, 6.24061] 3.30019 0.99387
(16) 14578.89625 [-45.74798, 10.37852] 8.63559 0.98286
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0.30384% and 0.99267%. The correlations by Heydari et al. [22] (Eqs. (34) and
(35)), by Gregory and McEnery [32] (Eqs. (50) to (52)), and by Haaland [11]
(Eq. (15)) have, respectively, 1.31108%, 1.35515%, and 1.42365% maximum rel-
ative errors.

Correlations by Manadilli [14] (Eq. (21)), by Ghanbari et al. [20] (Eq. (29)),
by Avci and Karagoz [17] (Eq. (26)), by Beluco and Schettini [24] (Eq. (38)),
by Swamee and Jain [7] (Eq. (9)), by Churchill [6] (Eq. (8)), and by Round [26]
(Eq. (44)) have maximum relative errors between 2.72852% and 5.46929%.

With maximum relative error equal or greater than 7.98871% are correlations
by Eck [26] (Eq. (41)), by Samadianfard [21] (Eqs. (30) and (31)), by Moody [4]
(Eq. (5)), by Wood [5] (Eqs. (6) and (7)) and by Chen [12] (Eq. (16)). Among
the explicit correlations analysed, equation by Chen has the greatest maximum
relative error of 45.74798%, the greatest average relative error of 8.63559% and
the least R2 of 0.98286.

4.2 Computational Burden of the Correlations

Table 2 shows the computational time of the explicit and Colebrook’s correla-
tions. Their time ratio, average and standard deviation of computational time
are presented. All correlations are ranked from the smallest to the largest average
computational time.

As expected, in general, the fastest correlations are also the least accurate
ones. The most accurate explicit correlation (Eqs. (17) to (18)) has computa-
tional time 4.5 times greater than the fastest (Eq. (5)). One important result is
that the fixed point iterative method of calculation of the Colebrook equation,
which is Eq. (57), is the most time consuming one. Its computational time is 2.6
times longer than the slowest explicit correlation (Eqs. (34) to (36)).

4.3 Speed/Accuracy Analysis of the Correlations

The computational time of Colebrook’s correlation is larger than those of the
explicit correlations. Therefore, depending on the accuracy need, any explicit
correlation can be used to reduce the computational time in simulations. Figure 1
shows the plot of the explicit correlations’ ratio of maximum relative error (in
the abscissa axis) by their ratio of computational time (in the ordinate axis)
and allows to determine the explicit correlations with the best balance between
accuracy and computational burden.

The points marked with squares are the correlations with the best balance
between accuracy and computational time. The shorter computational time and
lower maximum relative error, the better. Points closer to the origin (0,0) or
to either axis mean better explicit correlations. The first one, in the top left, is
Serghides’ [13] correlation (Eqs. (17) to (20)), with maximum error of 0.00314%
and ratio of time of 4.47833. Its more accurate and less time consuming than
the correlation by Heidary et al. [22] (Eqs. (34) and (35)), which is the point in
the top of Figure 1.
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Table 2. Ranking of the fastest to the slowest correlations. Time ratio is the average
computational time of the correlation divided by the smallest average computational
time among all correlations, t is the average computational time and σ is its standard
deviation.

Equation(s) Time ratio t [s] σ [s]

(5) 1.00000 0.23821 0.00438
(16) 1.02485 0.24413 0.01804
(28) 1.62218 0.38641 0.00509
(8) 1.62941 0.38814 0.00686
(41) 1.65171 0.39345 0.02216
(9) 1.66194 0.39589 0.01599
(38) 1.66650 0.39697 0.01020
(15) 1.70599 0.40638 0.02625
(29) 1.80823 0.43074 0.04267
(44) 2.01129 0.47910 0.05840
(21) 2.07453 0.49417 0.05694
(53), (54), (55), and (56) 2.19184 0.52211 0.00555
(6) and (7) 2.19406 0.52264 0.00486
(22) and (23) 2.31085 0.55046 0.00441
(24) and (25) 2.33074 0.55520 0.00871
(37) 2.56558 0.61114 0.01196
(26) 2.64305 0.62959 0.08425
(27) 2.87608 0.68510 0.07418
(32) and (33) 3.01924 0.71921 0.00634
(42) and (43) 3.05794 0.72842 0.03721
(50), (51), and (52) 3.20991 0.76462 0.00825
(12) 3.47848 0.82869 0.06868
(47), (48), and (49) 3.62546 0.86361 0.08607
(10) and (11) 3.62941 0.86455 0.07591
(39) and (40) 3.85815 0.91904 0.03053
(30) and (31) 3.99840 0.95245 0.00846
(13) and (14) 4.00288 0.95352 0.01309
(45) and (46) 4.09536 0.97555 0.00474
(17), (18), (19), and (20) 4.47833 1.06677 0.02110
(34), (35), and (36) 5.16117 1.22943 0.01771
(57) 13.33385 3,17622 0.02452
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Fig. 1. Ratio of average computational time plotted against ratio of maximum relative
error of the explicit correlations. The recommended explicit correlations are those with
the best balance between accuracy and computational burden.
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The second recommendation is correlation by Shacham [8] (Eqs. (10) and
(11)), with maximum relative error of 0.01740% and ratio of time of 3.62941.
Buzzelli’s [26] correlation (Eqs. (47) to (49)) have a very similar ratio of time of
3.62546, but its maximum relative error is 0.10407%, which is six times greater
than Shacham’s.

The correlation proposed by Brkić and Praks [33] (Eqs. (53) to (56)) is the
third recommendation, with maximum relative error of 0.12447% and ratio of
time of 2.19406. With similar maximum error, but with slightly larger compu-
tational time, are correlations by Sonnad and Goudar [16] (Eqs. (24) and (25)),
by Offor and Alabi [23] (Eq. (37)), and by Vatankhah [16] (Eqs. (32) and (33))
(on the dotted line).

The fourth and last recommendation is the correlation developed by Fang et
al. [19] (Eq. (28)), with a maximum relative error of 0.49149% and ratio of time
of 1.62218. Their correlation consumes about the same computational time as
correlation by Haaland [11] (Eq. (15)), which has the ratio of time of 1.70599,
but the relative error of the latter is up to 1.42365%. Haaland’s equation is the
most accurate correlation with only one input of both relative roughness and
Reynolds number, and therefore it is the best suited for calculations by hand.
The fastest correlation, which is the circle in the bottom of Figure 1, has error
up to 15.89867%, relative to Colebrook’s correlation.

5 Conclusions

The use of explicit correlations to calculated the friction factor in pipes reduces
the computational time in simulations, compared to the implicit correlation of
Colebrook. The slowest correlation is 2.6 times faster than Colebrook’s itera-
tive calculation for accuracy of ten decimal places. In decreasing order of ac-
curacy and increasing order of speed, the recommend explicit correlations are:
Serghides’ [13] (Eqs. (17), (18), (19), and (20)) for maximum error of 0.00314%
and average error of 0.00055%, Shacham’s [8] (Eqs. (10) and (11)) for maximum
of 0.01740% and average of 0.00206%, Brkić and Praks’ [33] (Eqs. (53), (54), (55),
and (56)) for maximum of 0.12477% and average 0.05500%, and Fang et al.’s [19]
(Eq. (28)) for maximum error of 0.49149% and average error of 0.16294%.
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